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Abstract
The stochastic motion of a wall of mass M separating two semi-infinite
cylindrical volumes filled with non-interacting point particles of mass m is
studied. The initial equilibrium states on both sides are characterized by
the same pressure but by different temperatures and densities. Frictionless
motion of the wall is entirely due to collisions. In the scaling limit where
the mass M grows as the surface area of the wall M ∼ L2, L → ∞ and
ε = 2m/(m + M) ∼ L−2, the Ornstein–Uhlenbeck process is shown to govern
the stochastic dynamics. In an inhomogeneous environment the wall behaves
like a Brownian particle with an effective temperature determined by the ratio
of the energy and particle fluxes. The global particle flux defines the dynamic
friction coefficient. A comparison with predictions of Boltzmann’s theory is
presented, bringing in the subtle problem of the drift velocity.

1. Introduction

The relaxation of the velocity distribution of a Brownian particle immersed in a gas at
thermodynamic equilibrium is known to follow the Ornstein–Uhlenbeck process [1] (see
also [2] and references therein). This Gaussian, stationary and Markovian stochastic process
transforms the initial state �(V ; 0) = δ(V ) (Brownian particle at rest) into the equilibrium
Maxwell distribution according to the formula

�(V ; t) =
{

M

2πkB T [1 − exp(−2γ t)]

}3/2

exp

{
− MV 2

2kB T [1 − exp(−2γ t)]

}
, (1)

where t > 0 denotes time, V = |V |, M is the mass of the Brownian particle, γ is the friction
coefficient and kB and T are Boltzmann’s constant and the temperature of the gas, respectively.
The evolution law (1) is entirely induced by collisions.

Our object is to study a more general situation, where the surrounding gas is not at thermal
equilibrium because of the presence of spatial inhomogeneities in its density and temperature
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fields. To this end we have chosen a particularly simple model inspired by the still challenging
adiabatic piston problem [3]. The kind of analysis presented here follows the ideas of Sinai [4],
indicating the method for a mathematically rigorous study of the stochastic dynamics. Some
previous studies of self-diffusion in inhomogeneous media can be found in [5, 6]. The case of
the Brownian particle interacting with two different gas mixtures having the same temperatures,
pressures and densities has been studied in [7], with the idea of going beyond the linear Fokker–
Planck equation.

Consider an ideal gas enclosed in an infinite three-dimensional cylinder with a cross section
area L2. A mobile flat wall perpendicular to the symmetry axis of the cylinder partitions the
gas into two disjoint semi-infinite volumes. The wall has a constant surface mass density σ ,
so its total mass M is given by

M = σ L2. (2)

We choose the coordinate system whose X-axis coincides with the symmetry axis of the
cylinder.

In the present study the wall with its single degree of freedom (translations along the
X-axis) will play the role of the massive Brownian particle. We denote by X (t) and V (t) its
position and velocity, respectively. The motion of the wall results from collisions with point
particles of mass m constituting the surrounding gas. Specular reflections of these particles
at the immobile lateral walls of the cylinder do not change X-components of their velocities.
With no loss of generality we shall thus suppose that all velocities are oriented along the X-axis.
This property remains conserved under collisions with the wall.

In the present paper we suppose that at the initial moment t = 0 the volumes of the gas
on the left- and on the right-hand side of the wall are in homogeneous states with different (in
general) number densities and temperatures, but with the same pressures. More precisely, at
t = 0,

(i) the wall is at rest at the origin, X (0) = 0, V (0) = 0,
(ii) the gases on the left- and on the right-hand side of the wall have Poisson’s spatial

distributions with parameters (number densities) ρ− and ρ+, respectively,
(iii) the probability density for finding a particle of the gas with velocity v is given by

φ−(v) = φ−(−v) within the left subvolume, and by φ+(v) = φ+(−v) within the right
subvolume, the velocities of different particles being uncorrelated,

(iv) φ−(v) = 0 outside the interval 0 < v−
min < |v| < v−

max

and similarly

φ+(v) = 0 outside the interval 0 < v+
min < |v| < v+

max ,

(v) the pressures within the two subvolumes are equal

ρ−
∫

dv mv2φ−(v) = ρ−kB T − = ρ+kB T + = ρ+
∫

dv mv2φ+(v)

but the densities ρ−, ρ+ and the temperatures T −, T + are in general different
(inhomogeneity).

The aim of our study is to determine the nature of the stochastic process followed by the
velocity V (t) of the moving Brownian wall in the asymptotic scaling region L → ∞, where

m

M
= m

σ L2
� 1. (3)
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2. Constructing basic stochastic fields

Consider the division of the time axis into intervals of equal length 	. Suppose that we know
the velocity of the wall at time tn = n	. We denote it by

Vn = V (tn) = V (n	). (4)

The value of Vn+1 then follows from the binary collision law. When a gas particle with velocity
v hits the wall moving with velocity V , the velocity of the wall after collision is given by

V ′ = V − 2m

m + M
(V − v) = (1 − ε)V + εv, (5)

where

ε = 2m

(m + σ L2)
� 1. (6)

Suppose that within the time interval (tn, tn+1) the wall suffers kn collisions at the moments

tn +
j∑

r=1

τr , j = 1, 2, . . . , kn where τr > 0, r = 1, . . . , kn,

kn∑
r=1

τr < 	. (7)

We denote by v j the precollisional velocity of the gas particle at the j th encounter. By
iterating the collision law (5) kn times we arrive at the exact relation

Vn+1 = (1 − ε)kn Vn + ε

kn∑
j=1

(1 − ε)kn− jv j . (8)

In the asymptotic region (6) we put

(1 − ε)kn = exp[kn log(1 − ε)] ≈ exp(−εkn), (9)

and similarly

(1 − ε)kn− j ≈ exp[−ε(kn − j)]. (10)

The asymptotic form of equation (8) thus reads

Vn+1 = exp(−εkn)Vn + ε

kn∑
j=1

v j exp[−ε(kn − j)]. (11)

In equation (11) there appear the following stochastic variables:

(i) kn = number of collisions during the time interval [tn, tn+1] and
(ii) v j = precollisional velocity of the gas particle at the j th encounter, j = 1, 2, . . . , kn .

The properties of kn and v j can be deduced from the fact that the gas particles which collide
with the wall within the time interval [tn, tn+1] = [tn, tn + 	] belong at t = 0 to the subset A
of the one-particle phase space defined by

A = {(x, v) : x + vt = X (t), tn < t < tn + 	}. (12)

If the wall were clamped, there would be no macroscopic (mean) force acting on it owing to
the assumed equality of the initial pressures. According to the collision law (5), the encounters
with the gas particles introduce changes in V (t) of the order of ε � 1. An event consisting in
building up a velocity of the order ε0 = 1 is thus not likely to occur. Consequently, we assume
that in region (6) the collision-induced wall velocity remains small in the course of time

|V (t)| < min{v−
min, v

+
min}, (13)

so recollisions of the wall with the particles which hit it are of vanishing probability.
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Figure 1. Geometry of the phase space region generating collisions.

Geometrically, (13) implies that the set A is the sum of two trapezoids A− and A+,
corresponding to the particles arriving from the left- and from the right-hand side of the wall,
respectively (see figure 1). Notice that the straight lines with the slopes (−1/t ′) and (−1/t ′′)
delimiting the trapezoids in figure 1 cross within the region |v| < min{v−

min, v
+
min}. Assuming

t ′′ > t ′, we introduce the notation

A[t ′, t ′′; a′, a′′] = A−[t ′, t ′′; a′, a′′] ∪ A+[t ′, t ′′; a′, a′′] (14)

where
A−[t ′, t ′′; a′, a′′] = {(x, v) : a′′ − vt ′′ < x < a′ − vt ′; v−

min < v < v−
max }

A+[t ′, t ′′; a′, a′′] = {(x, v) : a′ − vt ′ < x < a′′ − vt ′′; v+
min < (−v) < v+

max }.
(15)

Then, the relevant subset (12) of the phase space, from which the colliding particles originate,
can be written as A[tn, tn+1; X (tn), X (tn+1)]. The geometrical structure shown in figure 1
permits us to realize the important fact that with the time increasing from tn to (tn + 	),
new regions of the phase space are always added, eventually building the complete set
A[tn, tn+1; X (tn), X (tn+1)]. Let us now define the stochastic variables

N(t ′, t ′′; a′, a′′) = N−(t ′, t ′′; a′, a′′) + N+(t ′, t ′′; a′, a′′) (16)

�(t ′, t ′′; a′, a′′) = �−(t ′, t ′′; a′, a′′) + �+(t
′, t ′′; a′, a′′), (17)

where N∓(t ′, t ′′; a′, a′′) is the number of particles in the set A∓[t ′, t ′′; a′, a′′], and
�∓(t ′, t ′′; a′, a′′) is the sum of the velocities of all the particles belonging to A∓[t ′, t ′′; a′, a′′].

The assumed initial condition implies the following properties of the stochastic fields N
and �.

(1) N− has the Poisson distribution with parameter λ− = 〈N−〉 = 〈(N− − 〈N−〉)2〉 given by

λ− = 1
2ρ−L2[〈|v|〉−(t ′′ − t ′) + a′ − a′′], (18)

where 〈|v|〉− = ∫
dv |v|φ−(v).
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(2) N+ has the Poisson distribution with parameter λ+ = 〈N+〉 = 〈(N+ − 〈N+〉)2〉 given by

λ+ = 1
2ρ+ L2[〈|v|〉+(t ′′ − t ′) + a′′ − a′], (19)

where 〈|v|〉+ = ∫
dv |v|φ+(v).

(3) The field (16) has the Poisson distribution with parameter λ = λ− + λ+.

The probability density for the field �+(t,′ , t ′′; a′, a′′) taking the value u is given by

χ+(u) = exp(−λ+)

∞∑
s=0

(ρ+ L2)s

s!

∫ 0

−∞
dv1 · · ·

∫ 0

−∞
dvs

×
s∏

j=1

{φ+(v j)[|v j |(t ′′ − t ′) + a′′ − a′]}δ
(

u −
s∑

i=1

vi

)
. (20)

The calculation of the Fourier transform yields

χ̂+(k) =
∫

du exp(−iku)χ+(u)

= exp

{
ρ+

2
L2

∫
dv φ+(v)(eik|v| − 1)[|v|(t ′′ − t ′) + a′′ − a′]

}
. (21)

From equation (21) one readily finds

〈�+〉 = −ρ+

2
L2[〈v2〉+(t ′′ − t ′) + 〈|v|〉+(a′′ − a′)] (22)

〈[�+ − 〈�+〉]2〉 = ρ+

2
L2[〈|v|3〉+(t ′′ − t ′) + 〈v2〉+(a′′ − a′)]. (23)

Along the same lines one can calculate the moments

〈�−〉 = ρ−

2
L2[〈v2〉−(t ′′ − t ′) + 〈|v|〉−(a′ − a′′)] (24)

〈[�− − 〈�−〉]2〉 = ρ−

2
L2[〈|v|3〉−(t ′′ − t ′) + 〈v2〉−(a′ − a′′)]. (25)

For the complete field � = �− + �+ one thus finds

〈�〉 = L2

2

{
[ρ−〈v2〉− − ρ+〈v2〉+](t ′′ − t ′) + [ρ−〈|v|〉− + ρ+〈|v|〉+](a′ − a′′)

}
(26)

〈(� − 〈�〉)2〉 = L2

2

{
[ρ−〈|v|3〉− + ρ+〈|v|3〉+](t ′′ − t ′) + [ρ−〈v2〉− − ρ+〈v2〉+](a′ − a′′)

}
.

(27)

3. Thermalization of the wall

We now return to the fundamental relation (11). The stochastic variables appearing therein
can be expressed in terms of the fields N and �. Indeed, by definition

kn = N[tn, tn + 	; X (tn), X (tn + 	)] (28)

and

v j =
j∑

i=1

vi −
j−1∑
i=1

vi = �

[
tn, tn +

j∑
r=1

τr ; X (tn), X

(
tn +

j∑
r=1

τr

)]

− �

[
tn, tn +

j−1∑
r=1

τr ; X (tn), X

(
tn +

j−1∑
r=1

τr

)]
. (29)
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We begin the study of equation (11) by examining the term Vn exp(−εkn) in the limit
L → ∞, assuming the scaling of the time interval

	 ∼ L−γ , 0 < γ < 2. (30)

To this end we rewrite equation (28) in the form

kn = 〈N[tn, tn + 	; X (tn), X (tn)]〉 + R1
N + R2

N , (31)

where

〈N[tn , tn + 	; X (tn), X (tn)]〉 = L2

2
[ρ−〈|v|〉− + ρ+〈|v|〉+]	 (32)

(see (16), (18), (19)). The remainder terms R1
N , R2

N are given by

R1
N = N[tn, tn + 	; X (tn), X (tn)] − 〈N[tn, tn + 	; X (tn), X (tn)]〉 (33)

R2
N = N[tn, tn + 	; X (tn), X (tn + 	)] − N[tn, tn + 	; X (tn), X (tn)]. (34)

The remainder (33) represents the fluctuation of the Poisson distribution. Using the shorthand
notation

α = 1
2 [ρ−〈|v|〉− + ρ+〈|v|〉+] (35)

we thus find √
〈(R1

N )2〉 = L
√

α	. (36)

We shall assume that the mean value (32), equal to L2α	, is dominant in the right-hand side
of (31) in the scaling limit under consideration (the proof of this assumption is left as an open
problem here). Consequently, we find asymptotically

Vn exp(−εkn)
∼= Vnexp(−εL2α	), (37)

where, in accordance with definition (6)

lim
L→∞

εL2 = 2m

σ
.

In equation (11) there appears also the term

ε

kn∑
j=1

v j exp[−ε(kn − j)] = ε�[tn, tn + 	; X (tn), X (tn + 	)]

+ ε(1 − eε)

kn−1∑
j=1

exp[−ε(kn − j)]�

[
tn, tn +

j∑
r=1

τr ; X (tn), X

(
tn +

j∑
r=1

τr

)]
.

(38)

In order to obtain a rough estimate of the contribution containing the factor ε(1 − eε), we
replace the stochastic fields

�

[
tn, tn +

j∑
r=1

τr ; X (tn), X

(
tn +

j∑
r=1

τr

)]
, j = 1, 2, . . . , (kn − 1)

by

�[tn, tn + 	; X (tn), X (tn + 	)].

We then find the expression of the form

−ε{1 − exp[−ε(kn − 1)]}�[tn, tn + 	; X (tn), X (tn + 	)]

∼= −
[
ε(kn − 1)

	

]
	ε�[tn, tn + 	; X (tn), X (tn + 	)]. (39)
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According to our estimate of the collision number kn the ratio ε(kn − 1)/	 is of the order
of unity when L → ∞. Moreover, as 	 ∼ L−γ , 0 < γ < 2, the term (39) becomes
asymptotically negligible compared with the first term on the right-hand side of (38). We thus
claim that in the scaling limit only the term ε�[tn, tn +	; X (tn), X (tn +	)] should be retained.
According to equation (26), at equal pressures its mean value is given by

〈ε�[tn, tn + 	; X (tn), X (tn + 	)]〉 = εL2α(X (tn) − X (tn+1))

= − εL2α

∫ tn +	

tn

dτ V (τ ) ≈ −εL2α	V (tn). (40)

We thus rewrite (40) in the form

ε�[tn, tn + 	; X (tn), X (tn + 	)] = −εL2α	V (tn) + ε�[tn, tn + 	; X (tn), X (tn)]

+ εR�[tn, tn + 	; X (tn), X (tn + 	)]. (41)

The remainder R� will be assumed here to be negligible with respect to the fluctuating field
�[tn, tn + 	; X (tn), X (tn)] (with zero mean value), whose properties can be directly deduced
from equations (20)–(27). By retaining only the dominant terms we arrive at the stochastic
equation

V (tn + 	) = [exp(−εL2α	) − εL2α	]V (tn) + ε�[tn, tn + 	; X (tn), X (tn)]

≈ exp(−2εL2α	)V (tn) + ε�[tn, tn + 	; X (tn), X (tn)]. (42)

The analysis of the field �(t ′, t ′′; a′, a′′) has shown that the corresponding probability
distribution depended on the differences (t ′ − t ′′) and (a′ − a′′) only. So, the probability
distribution of �[tn, tn + 	; X (tn), X (tn)] does not depend either on tn or on X (tn). In fact, its
Fourier transform reads (compare with (21))

χ̂(k) = exp

{
− L2	

2

∫
dv |v|[ρ+φ+(v)(1 − exp(ik|v|)) + ρ−φ−(v)(1 − exp(−ik|v|))]

}
.

(43)

Taking into account the equality of pressures (see point (v) in the description of the initial
state), we find that in the scaling limit where L2	 ∼ L2−γ → ∞ the distribution (43) takes
the Gaussian form

χ̂ (k) ≈ exp

{
− L2

4
	[ρ+〈|v|3〉+ + ρ−〈|v|3〉−]k2

}
= exp

(
− L2

2
	δk2

)
, (44)

where

δ = 1
2 [ρ−〈|v|3〉− + ρ+〈|v|3〉+].

The field �[tn, tn + 	; X (tn), X (tn)] is thus also asymptotically Gaussian. The
corresponding probability density reads

χ(u) = 1

L
√

2πδ	
exp

(
− u2

2L2δ	

)
. (45)

By iterating the fundamental equation (42) we find the relation

Vn = V (tn) = ε

n−1∑
j=0

exp(−2 jαεL2	)�[t j , t j + 	; X (t j), X (t j )]. (46)

The probability distribution governing the velocity of the wall can now be deduced by standard
methods (for details see e.g. [1]). Up to a normalizing factor we find

exp

{
− V 2

2L2δε2
∑n−1

j=0 	 exp(−4 jαεL2	)

}
. (47)



9272 J Piasecki

In the scaling limit the time interval	 tends to zero,so choosing a fixed time n	 < t < (n+1)	

we find that (47) takes the form

exp

{
− V 2

2δε2 L2
∫ t

0 dτ exp(−4αεL2τ )

}
. (48)

The asymptotic normalized probability density for finding the wall with velocity V at time t
reads

χ(V ; t) =
√

2α

πδε[1 − exp(−4αεL2t)]
exp

{
− 2αV 2

δε[1 − exp(−4αεL2t)]

}
. (49)

The evolution law (49) is identical to the Ornstein–Uhlenbeck process of thermalization of the
Brownian particle starting with zero velocity (compare with (1)), with the dynamical friction
coefficient

γ = 2αεL2 = 2m

σ
[ρ−〈|v|〉− + ρ+〈|v|〉+]. (50)

Recalling the definition ε = 2m/(m + M) ≈ 2m/M we also readily infer from (49) the
temperature T∞ of the wall attained in the long-time t → ∞ limit

kB T∞ = mδ

2α
= m

2

[
ρ+〈|v|3〉+ + ρ−〈|v|3〉−
ρ−〈|v|〉− + ρ+〈|v|〉+

]
(51)

(see (35), (45)). T∞ is thus determined by the ratio of the energy and particle fluxes.

4. Discussion

We based the analysis of the stochastic dynamics of the massive wall on the collision law (5)
using the scaling

M ∼ L2, ε = 2m

m + M
∼ L−2, 	 ∼ L−γ , 0 < γ < 2, L → ∞. (52)

The dynamics has been studied under the equal-initial-pressures assumption. Our derivation
sketches the way along which a rigorous derivation of the Ornstein–Uhlenbeck process (49)
could be constructed. In particular, the validity of (49) still requires proving that the neglected
remainder terms R1

N , R2
N , R� (see equations (33), (34), (41)) are indeed vanishingly small

compared with those retained in equation (42).
The particles of the ideal gases were treated here as not interacting with each other. It

is thus interesting to discover what parameter is responsible in this case for the dynamical
friction. According to formula (50) the friction force is simply proportional to the combined
particle fluxes arriving from both sides on the wall.

Our approach made the Ornstein–Uhlenbeck process appear in a new case, allowing the
spatial inhomogeneity of the system. In order to avoid dealing with effects of recollisions we
introduced cut-offs in the velocity spectrum of the initial distributions (13). It is interesting to
evaluate the asymptotic temperature (51) of the wall in the case of the Maxwell distributions

φ±(v) =
{

m

2πkB T ±

}1/2

exp

{
− mv2

2kB T ±

}
(53)

without cut-offs in order to compare our results with those derived within the Boltzmann theory.
A straightforward calculation yields in this case

T∞ = √
T −T +. (54)
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It turns out that the geometric mean (54) also plays the role of temperature in the dominant
Gaussian term of the perturbative solution of the Boltzmann equation corresponding to the
stochastic process studied here [8]. This is not surprising, as the fundamental assumption on
which Boltzmann’s kinetic theory relies is the absence of recollisions. However, the study of
the Boltzmann equation has also led to the prediction in the stationary state of a drift velocity
induced by the temperature difference and oriented toward the higher-temperature region [8]

lim
t→∞〈V (t)〉 =

√
2π

4

√
m

M

[√
kB T +

M
−

√
kB T −

M

]
. (55)

The evaluation of the drift (55) required going beyond the dominant term in the perturbative
expansion in parameter ε. The open question is thus whether it is possible to prove that the
remainder terms neglected here contain information about the subtle effect (55). The question
is of fundamental interest because it is not clear whether going beyond the Ornstein–Uhlenbeck
process makes sense at all, and, if so, how to extend the present approach to determine higher-
order corrections. This question requires a detailed study of the remainder terms (33), (34)
and (41), which in any case is necessary for constructing a rigorous derivation of the Ornstein–
Uhlenbeck process (49). It is to be noted that the existence of the drift velocity has been
rigorously proved in the special case of M = m, where the mass of the wall was equal to that
of the gas particles [9].

Acknowledgment

The author gratefully acknowledges most inspiring discussions with Ya G Sinai and thanks
him for his kind invitation to Princeton University.

References

[1] Chandrasekhar S 1943 Stochastic problems in physics and astronomy Rev. Mod. Phys. 15 1
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[5] Dürr D, Goldstein S and Lebowitz J L 1986 Self-diffusion in a nonuniform model system Phys. Rev. Lett. 57

2481
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